

PowderRange® 17-4

Applicable specifications: ASTM A564/A564M

Associated specifications: UNS S17400, AMS5643, ASME SA564, ASTM A705, DIN 1.4548 (X5CrNiCuNb17-4-4), DIN 1.4542 (X5CrNiCuNb16-4), AISI 630

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Chromium	15.00-17.50 %	Copper	3.00-5.00 %
Nickel	3.00-5.00 %	Manganese	Max 1.00 %	Silicon	Max 1.00 %
Columbium + Tantalum	0.15-0.45 %	Nitrogen	Max 0.10 %	Oxygen	Max 0.10 %
Carbon	Max 0.07 %	Phosphorus	Max 0.040 %	Sulfur	Max 0.030 %

Description

PowderRange 17-4 stainless steel is a martensitic precipitation/age-hardening stainless steel offering high strength and hardness, along with excellent corrosion resistance, up to 600°F (316°C). It has good fabricating characteristics and can be age-hardened by a single-step, low-temperature treatment, which can be chosen to achieve specific strength and toughness combinations. Due to this balanced combination of performance and ease of use in AM, PowderRange 17-4 for additive manufacturing has been used for a wide variety of applications, including rapid tooling functional components in nearly every market.

Key Properties:

- Good strength, toughness, hardness, and ductility
- Good corrosion resistance

Markets:

- Aerospace
- Food processing
- Petrochemical
- Medical

Applications:

- Surgical instruments and tools
- Valves and fittings
- Pumps and impellers
- Manifolds

- Industrial and chemical processing equipment
- Tooling

> PowderRange 17-4

Powder properties

PART NUMBER	PowderRange 174 F		
APPLICATION	L-PBF ¹		
MAXIMUM PARTICLE SIZE	$Max1wt\% > 53 \mu m^2$		
MINIMUM PARTICLE SIZE	$Max 10 vol\% < 15 \mu m^3$		
LSD PERCENTILE	D10, D50, D90 ³ , reported		
ATOMIZATION	Vacuum Induction Melted, Nitrogen Gas Atomized		
APPARENT DENSITY (G/CM³)	Measured according to ASTM B2124 and reported		
HALL FLOW (S/50G)	Measured according to ASTM B213 $^{\rm 5}$ or ASTM B964 $^{\rm 6}$ and reported		

ASTM/ISO 52900: Laser—Powder Bed Fusion (L-PBF), Electron-Beam Powder Bed Fusion (EB-PBF), Directed Energy Deposition (DED)

Testing of powder will fulfill certification requirements to Nadcap Materials Testing and ISO/IEC 17025 Chemical, per relevant ASTM procedures.

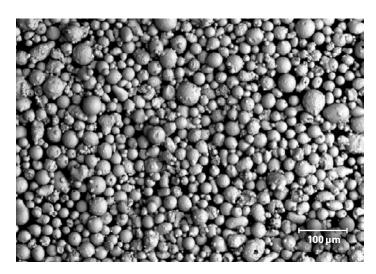


FIGURE 1—SEM IMAGE OF TYPICAL POWDERRANGE 17-4 POWDER

² ASTM B214 Standard Test Method for Sieve Analysis for Metal Powders

³ ASTM B822 Standard Test Method for Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering

⁴ ASTM B212 Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel

 $^{^{5}}$ ASTM B213 Standard Test Method for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel

⁶ ASTM B964 Standard Test Method for Flow Rate of Metal Powders Using the Carney Funnel

> PowderRange 17-4

Additive manufacturing process guidance

Laser-Powder Bed Fusion	PowderRange 17-4 is compatible with all commercially available L-PBF equipment.				
L-PBF As-built	To achieve mean, as-built density >99.9%, 20 to 60 μ m layer thicknesses and Specific Energy \geq 50 J/mm³ is recommended.				
Stress relief	Stress relieve at 1250°F (677°C) for 1 hour per inch of thickness (minimum 2 hours) up to 4 hours.				
Homogenization Hom	Carpenter Additive recommends a homogenization treatment at 2000°F (1093°C) for 1 hour followed by an air cool to minimize anisotropy. If performing a HIP'ing step, a separate homogenization is not required.				
Hot Isostatic Press HIP/Sol/H900	We recommend HIP'ing as standard practice for microstructure homogenization; removal of residual spatter-induc voids, trapped gas porosity in powder and keyhole porosities; as well as to heal any shrinkage-induced micro-crack the material.				
	To achieve up to full density (100%): Process components under argon at not less than 14.5 ksi (100 MPa) at a temperature of approximately 2087°F (1141°C); hold at the selected temperature for approximately 240 min, then cool under inert atmosphere to below 800°F (427°C).				
	Follow with Solution Anneal and Age treatment as described below.				
Solution Anneal and Age Condition Hom/Sol/H900	After either homogenization or HIP'ing, Solution Anneal at 1900° F (1038° C) per ASTM A564/A564M for 0.5 hours, cool below 90° F (32° C) to achieve complete transformation to martensite.				
	Sections under 3 in. (76 mm) can be quenched in a suitable liquid quenchant (e.g. water or oil) and sections over 3 in. (mm) should be rapidly air cooled. It is recommended not use this Solution Annealed condition, without age hardening for the final product due to susceptibility to stress-corrosion cracking.				
	$After Solution Anneal, age material as desired per ASTM A564/A564M, e.g.\ 900°F\ (482°C) for 1\ hour and air cool, per ASTM A564/A564M.$				
	Note: due to the higher nitrogen content of PowderRange 17-4, complete transformation to martensite may not occur during heat treatment, resulting in slightly lower mechanical properties as compared to PowderRange 17-4 AR. If typical cast/wroug PowderRange 17-4 properties are desired, we recommend PowderRange 17-4 AR as a superior alternative.				
Machinability	PowderRange 17-4 is readily machined in both the solution-treated and various age-hardened conditions. In the solution-treated condition, it machines similarly to stainless steel types 302 and 304.				
	When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.				

> PowderRange 17-4

Corrosion resistance

IMPORTANT NOTE:

The following 4-level rating scale (Excellent, Good, Moderate, Restricted) is intended for comparative purposes only and is derived from experiences with wrought product. Additive manufactured material may perform differently; corrosion testing is recommended. Factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Moderate
Sea Water	Restricted	Salt Spray (NaCl)	Good
Humidity	Excellent	Sour Oil/Gas	Restricted
Sodium Hydroxide	Moderate		

For additional information, please contact your nearest sales office:

info@carpenteradditive.com | 610 208 2000

The mechanical and physical properties of any additively-manufactured material are strongly dependent on the processing conditions used to produce the final part. Significantly differing properties can be obtained by utilizing different equipment, different process parameters, different build rates and different geometries. The properties listed are intended as a guide only and should not be used as design data.

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings LLC, a subsidiary of Carpenter Technology Corporation.